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Abstract. Technology scaling, extreme chip integration and the compelling 

requirement to diminish the time-to-market window, has rendered 

microprocessors more prone to design bugs and hardware faults. 

Microprocessor validation is grouped into the following categories, based on 

where they intervene in a microprocessor’s lifecycle: (a) silicon debug: the first 

hardware prototypes are exhaustively validated, (b) manufacturing testing: the 

final quality control during massive production, and (c) in-field verification: 

runtime error detection techniques to guarantee correct operation. The 

contributions of this thesis are the following: (1) Silicon debug: We propose the 

employment of deconfigurable microprocessor architectures along with a 

technique to generate self-checking random test programs to avoid the 

simulation step and triage the redundant debug sessions, (2) Manufacturing 

testing: We propose a self-test optimization strategy for multithreaded, 

multicore microprocessors to speedup test program execution time and enhance 

the fault coverage of hard errors; and (3) In-field verification: We measure the 

effect of permanent faults performance components. Then, we propose a set of 

low-cost mechanisms for the detection, diagnosis and performance recovery in 

the front-end speculative structures. This thesis introduces various novel 

methodologies to address the validation challenges posed throughout the life-

cycle of a chip.   
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1 Introduction 

The evolution of semiconductor technology and computer architecture has 

radically transformed our world throughout the last decades. However, the 

combination of technology scaling and extreme chip integration, along with the 

compelling requirement to diminish the time-to-market window, has rendered 

microprocessors more prone to design bugs and hardware faults. The goal of this 

thesis is to provide solutions to the validation challenges posed from the 

microprocessor products throughout the life-cycle of a chip. 

Microprocessor validation is grouped into the following categories, based on where 

they intervene in a microprocessor’s lifecycle: (a) silicon debug: the first hardware 
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prototypes are exhaustively validated, (b) manufacturing testing: the final quality 

control during massive production, and (c) in-field verification: runtime error 

detection techniques to guarantee correct operation. The contributions of this thesis 

are the following: 

• Silicon debug: We propose the employment of deconfigurable 

microprocessor architectures along with a technique to generate self-checking random 

test programs to (a) avoid the time- and the resource-consuming simulation step, (b) 

triage the redundant debug sessions, and thus to accelerate silicon debug [2] [4]. 

• Manufacturing testing: We propose a self-test optimization strategy for 

multithreaded, multicore microprocessors to (a) speedup test program execution time, 

(b) enhance the fault coverage of hard errors, and thus to make manufacturing testing 

more efficient [1].  

• In-field verification: We measure the effect of permanent faults 

performance components. Then, we propose a set of low-cost hardware-based 

mechanisms for the detection, diagnosis and performance recovery in the front-end 

speculative structures [5] [7] [10]. 

The share of silicon debug in the overall microprocessor chips development cycle 

is rapidly expanding. The validation step that detects the vast majority of design bugs 

is the one that stresses the silicon prototypes by applying huge numbers of random 

tests. Despite its bug detection capability, this step is constrained by the extreme 

computing needs for random test program simulation. Moreover, another major 

bottleneck and source of “noise” of this phase is that large numbers of random test 

programs fail due to the same or similar design bugs. This redundant behaviour adds 

long delays in the debug flow since each failing random program must be separately 

examined, although it does not usually bring new debug information. This thesis 

addresses both challenges of silicon debug. A self-checking methodology is proposed 

for generating random test programs (exploiting the ISA diversity property) that 

detect bugs by comparing the results of equivalent instructions combined with a 

technique to triage the failing test programs into categories with common failure 

modes. The proposed framework: (a) improves bug detection efficiency, (b) reduces 

the redundant debug session, and thus accelerates silicon debug. 

When a sufficient level of coverage is reached the microprocessor design enters the 

production stage, where a last quality control is performed to detect any 

manufacturing defect.  Functional self-testing forms an integral part of manufacturing 

test flow due to its at-speed testing and non-intrusive nature. Multithreaded (MT) 

SBST methodology proposes a novel self-test optimization strategy for multithreaded, 

multicore microprocessor architectures (OpenSPARC T1 microprocessor model).  

The  proposed  self-test  program  execution optimization  aims  to:  (a)  take  

maximum  advantage  of  the available execution parallelism provided by multiple 

threads and multiple cores, (b) preserve the high fault coverage that single-thread 

execution provides for the processor components, and (c) enhance the fault coverage 

of the thread-specific control logic. MT-SBST methodology significantly speeds up 

self-test time, while at the same time it improves the overall fault coverage.  

The combination of design complexity, shrinking time-to-market windows, and 

wear-out effects increases the failure probability of modern design and leads 

microprocessor manufactures to integrate numerous in-field verification mechanisms.  



Trends such as low-voltage operation and process scaling are expected to 

significantly increase the rate of faults experienced by silicon. Their impact on a 

core's non-cache SRAM structures has not been accurately quantified. Faults in these 

structures will not affect correctness, but can cause severe performance degradation 

and variability among otherwise identical cores. We first classify and quantify the 

impact of permanent faults in the performance components of modern 

microprocessors. Then, we propose a low-cost microarchitectural mechanism that 

exploits the self-verification property of predictors to achieve performance recovery. 

This thesis introduces various novel methodologies to address the validation 

challenges posed throughout the life-cycle of a chip. The proposed techniques make 

the validation process more efficient and are easily applicable to the existing 

industrial flow. 

2 Silicon debug 

Aggressive technology scaling and extreme chip integration, combined with the 

compelling requirement to diminish the time-to-market window have rendered 

microprocessors more prone to design bugs than ever. As a result, silicon debug – the 

process of validating and debugging a new microprocessor design on its first silicon 

prototype chips – has evolved to a critical, time-consuming, and labour-demanding 

step in a chip’s development flow [11]. Recent trends [16] show that the time spent 

from the arrival of the first silicon prototype chip to high volume production ramping 

up is steadily growing, while the ratio between the size of the design and the debug 

teams has reached 2:1. Thus, an efficient silicon debug approach that promptly detects 

and eliminates the design bugs before volume production can make the difference 

between success and failure of a microprocessor product.  

Silicon debug starts with the arrival of the first prototypes and often continues well 

after a product has gone to volume production. A comprehensive suite of test 

programs covering many test scenarios are executed on the prototype chips to detect 

bugs that can be anything from logic/functional bugs, electrical or process-related 

bugs to mask-related manufacturing defects [14]. Subsequently, for each failing test 

program (one that does not execute correctly due to a bug), separately, a systematic 

debug phase is performed by the debug engineers to identify the root cause of the 

failure.  

Massive application of automatically generated random test programs on the 

prototype microprocessor chips is one of the most effective parts of silicon debug 

[13]. Despite its bug detection efficiency, this step is constrained by extreme 

computing needs for random tests simulation to extract the bug-free memory image 

for comparison with the actual silicon image. Another major bottleneck and source of 

“noise” in this phase is that large number of random test programs fail due to the 

same or similar design bugs. This redundant behaviour prolongs silicon debug phase 

since each failing random test program must be exclusively root-cause analysed, 

although it does not usually bring new debug information. Finally, volume production 

may be further prolonged due to bugs that lurk behind other bugs. These blocking 



bugs stall the execution of the subsequent tests, since no workaround exists and 

therefore additional re-spins are needed. 

This work introduces a silicon debug methodology for microprocessors with two 

major objectives: (a) increase coverage by applying more tests to silicon prototypes; 

and (b) reduce validation time by triaging the redundant failing random test programs. 

The methodology does so by exploiting (1) the inherent diversity of microprocessor 

instruction sets to eliminate the time consuming simulation step by employing self-

checking tests; and (2) the property that allows hardware components to be 

deconfigured without compromising microprocessor’s functional completeness to 

bucketing the redundant failing test programs. Figure 1 shows an overview of the 

flow. 

A. Test generation: The fundamental first step is the identification of ISA diversities, 

i.e. microprocessor instruction equivalences, and the population of the ISA diversity 

database. The database contains for each instruction a list of equivalent instruction 

sequences. Then, the flow is fed with the random test programs (original RiTs) 

already generated (but not simulated) by sophisticated random test program 

generators that all microprocessor manufactures internally use [11] [12]. We pair each 

original RiT with an Equivalent RiT to generate an enhanced RiT. An eRiT is 

automatically generated from an original RiT replacing its instructions with their 

equivalent counterparts that have been stored in the ISA diversity database. Finally, a 

checking code compares the stored results of the original RiT and the eRiT to identify 

mismatches. A mismatch indicates a potential silicon bug. 

B. Bug detection: Combining the self-checking method, with a hardware replay 

mechanism (Figure 2– right part) enables the extraction of as much as possible useful 

debugging information regarding the bug detection capability of each test program 

and provides a fast workaround solution to bypass blocking bugs. The hardware 

mechanism records the failing comparisons when mismatches are detected and 

replays the execution of the original RiT by replacing the execution of the offending 

instruction with its equivalent. In particular, the “replacement” is done on-the-fly 

using the program counter of the store instructions saved in buffers store-addr and 

estore-addr. During the first run of the enhanced RiT, the checking code finishes with 

the mismatches between the set of k responses of the original RiT and the eRiT stored 

in mids-queue (mismatch id queue), with mid between 0 and k. If mid = 0 (i.e. the 

queue is empty), then there is no mismatch and the chip passes the enhanced RiT; 

debug continues with the next RiT. 

If queue is not empty (i.e mid > 0) the enhanced RiT will be replayed mid times, 

because store[mid] and estore[mid] instructions generated different results (Figure 3 – 

instr.16). The key functionality of the mechanism is that when a mismatch is detected 

between store[i] and estore[i], during replay, instead of executing the “buggy” code 

between store[i–1] and store[i], the processor executes the equivalent code between 

estore[i–1] and estore[i]. The mismatch has been bypassed, subsequent responses are 

not corrupted and if the remaining test can detect another mismatch (more bugs) it is 

allowed to do so. A list of mismatch identifiers (mids) is the log information our 

method provides. An integer m in the log (an entry in the mids-queue) means that: (a) 

the mth pair of stores produced a mismatch, i.e. store[m] and estore[m] produced 

different results; (b) the code between store[m–1] and store[m] has been replaced by 

the code between estore[m–1] and estore[m] and the original RiT continued. These 



two pieces of information can help the debug engineer identify the offending 

instructions and work on them. 
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Figure 1: The proposed silicon debug flow. 

C. Triage: As soon as bug detection phase finishes, hardware-assisted triage begins. 

Hardware triage is assisted through the integration of the triage mechanism (Figure 2– 

left part). For each failing self-checking random test, the triage mechanism selects the 

component that is most susceptible to contain a bug and deconfigures it in the next 

execution of the failing random test program. This process is repeated until the test 

program is correctly executed (i.e. the bug has been “masked” by the sequence of 

deconfigurations). All test programs that eventually execute correctly after the same 

sequence of deconfigurations are grouped into the same “bucket”. Intuitively, the bug 



that causes the failure most probably resides within the components that have been 

deconfigured before the test executes correctly. 

The outcome of this step is a list of components that have been deconfigured and is 

stored in the component buffer (each entry of this array saves the id of the 

component). The interpretation of the list provides the following triage-related 

information: (a) Empty list. The random test program was correctly executed. No 

failure detected; no debug action required in the morning, (b) List contains a set of the 

deconfigurable components. The random test program was correctly executed after 

components {Ck, Cn, Cm, Cq} have been deconfigured. The list of components 

indicates a “bucket” of failing test programs. All test programs ending with the same 

list of deconfigurations are grouped together; and (c) List contains all deconfigurable 

components. The random test program fails even after all deconfigurable components 

are turned off. No triage grouping information; the random test must be separately 

debugged. 

At the end of the multiple hardware-enabled test program re-executions, the contents 

of the component buffer and the mismatch identifier queue (grey colored boxes in 

Figure 2) are downloaded along with the remaining memory image of the prototype 

on the host machine (i.e. dedicated server that controls the entire validation campaign) 

for further analysis by the debug engineers. It should be noted that the proposed 

methodology detects bugs (both logical and electrical) with the following 

characteristics: (i) their excitation does not depend on the operational conditions 

(temperature, voltage, frequency); and (ii) they continue to manifest themselves 

despite the deconfiguration of components from the overall design. 
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Figure 2: The proposed hardware mechanism for silicon debug acceleration. 

To evaluation the proposed silicon debug methodology, we set up the tool chain on 

top of the PTLsim [18] architectural simulator as presented in [4]. 

First set of experiments: We compare our methodology, in terms of bug 

efficiency, with the traditional flow (mismatches are only detected off-line comparing 

the memory dumps of the actual execution with the expected memory dump contents 

from simulation) and with two other self-checking validation approaches [15] [17]. 

For each of the three methods, we use the same original RiT (4K instructions) as input 

and we enhance it according to the basic idea of each method. Our methodology 



detects all 1K bugs injected into the simulator (Figure 3) because we stopped 

generation of more RiTs when all the injected bugs were detected. The traditional 

flow detects 928 bugs (coverage 90.54%). This difference, against the proposed 

method, is explained by the activation of more hardware areas by the equivalent RiT. 

The approach of [17] detects 903 bugs (coverage 88.10%) because there are cases 

where an instruction cannot be reversed. Furthermore, the flexibility of the ISA 

diversity concept to deploy equivalent instructions which activate totally different 

paths in processor’s logic provides us with the ability to avoid bug masking 

conditions. Finally, [15] detects 210 bugs (coverage 20.49%) because it can only 

detect electrical bugs, since a logic bug will act in an identical way in both original 

and duplicated instruction. For a complete silicon debug plan (trillions of 

instructions), we expect our approach to have the same bug efficiency as the 

traditional flow since our bug detection capability relies on the original RiTs which 

are carefully generated by sophisticated industrial random generators. The advantage 

of our method is that by avoiding the time-consuming simulation step it is able to 

apply many more RiTs and thus detect potential bugs much earlier.  
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Figure 3: Design bug coverage for the four different methods. 

Second set of experiments: The proposed method refines the debug information 

using the hardware replay mechanism. During our bug injection experiments, we 

observed that the average number of different bugs that were detected by a single RiT 

is about 4. To verify the effectiveness of our approach on refining debug information, 

we activate the hardware replay mechanism in our infrastructure (the triage 

mechanism is disabled) and conducted a second set of experiments: we injected all the 

bugs at the beginning of the simulation and executed all RiTs with the highest bug 

detection capability. The proposed hardware mechanism detected all the injected bugs 

(through bypassing the offending instructions with their equivalents in the replay 

executions). This is a significant benefit of the proposed framework compared to the 

traditional flow which requires more tests to detect the same number of bugs. 

Third set of experiments:  To demonstrate the benefits of the triage mechanism 

on test program triaging, we have selected a set of 10 hard-to-detect logic bugs from 

the set of injected bugs distributed among the deconfigurable modules of PTLsim 

simulator (we characterize them as hard-to-detect because all 10 bugs are detected by 

a small number of test programs; smaller than the average case). Furthermore, all 10 

design bugs are together injected from the beginning of the bug injection campaign, 



as an attempt to model more accurately the silicon debug environment where all bugs 

can co-exist in the prototype chip. We repeated the experiments only for a subset of 

the initial random test programs that are affected from them; these are 341 test 

programs.  

Table 1 presents details about the selected design bugs. The first column is the id of 

each bug, while the second column gives the microprocessor component in which the 

bug resides. Issue Queue1 and Issue Queue2 refer to different components in the 

microprocessor design (Issue Queue1 for the integer cluster, and Issue Queue2 for the 

floating point cluster). The third column shows the number of test programs affected 

by each design bug when injected individually (from the first set of experiments) and 

the last column provides a short description. 

Bug 

ID 
Component 

Failing Test 

Programs 
Bug Description 

1 Conditional Predictor 45 
Update fetch address on branch 

misprediction fails 

2 RAS 10 Incorrect push to stack 

3 Issue Queue1 32 

Dependent uop issued, while 

producer is waiting in ready-to-

write-back state 

4 Issue Queue2 21 
Entry not flushed on a branch 

misprediction 

5 Floating Point Unit 50 Incorrect rounding operation 

6 Data cache 17 Valid array logic; invalid data read 

7 Load Queue 47 Load to store aliasing 

8 Store Queue 29 Store data before address gets valid 

9 Reorder Buffer 48 Commit entry more than once 

10 Reorder Buffer 42 Invalid control bit activation 

Total 341 - 
Table 1: Details of 10 hard-to-detect design bugs. 

Figure 4 shows the results for this set of experiments. The horizontal axis presents 

the different “buckets” of failing random test programs that are formed when the 

proposed methodology is applied. The vertical axis shows the number of failing test 

programs of each bucket. 

 
Figure 4: Failure categories for the 341 failing test programs. 



The application of the proposed methodology with the deconfiguration 

mechanisms enabled results in a triaging of the 341 random test programs in 9 

different failure categories shown in Figure 4: 

• Failure categories 1, 2, 3, 4, 6, 7, and 8 group the test programs that are 

affected exclusively from the design bugs in one of the following microprocessor 

components: Conditional Predictor, RAS, Issue Queue1, Issue Queue2, Data Cache, 

Load and Store Queues, respectively. As a result, when the deconfiguration controller 

turned the corresponding microprocessor component off, the bug is “masked” and the 

test program execution is correct. 

• Failure category 5 groups 53 random test programs, while the expected 

number of test programs affected from a design bug in the FPU unit is 50. The reason 

for that is that these particular test programs (3 from Issue Queue2) were able to 

detect more than one design bugs (design bugs injected both in the Issue Queue2 and 

the FPU). As a result, only when both buggy microprocessor components were 

deconfigured the re-execution of the test program results in a correct execution. 

• Failure category 9 includes the test programs that fail due to bugs 9 and 10 

injected in the Reorder Buffer’s logic. The deconfiguration mechanisms were unable 

to distinguish these design bugs into different categories, since both of them were 

inside the deconfiguration granularity of the ROB structure. Specifically, these bugs 

reside in neighboring entries of the re-order buffer and manifest themselves as invalid 

dependency re-dispatching when a mis-speculation happens. Therefore, the same 

sequence of deconfiguration results in masking both bugs..  

Clearly, the proposed flow has a profound impact on the effectiveness of silicon 

debug and greatly accelerates root cause analysis by removing the “noise” of 

redundant random tests that fail due to the same underlying bug (the 341 initial debug 

sessions are reduced to only 9 in the last set of experiments). 

3 Conclusions 

Today, the pervasiveness of microprocessors, the most complex and immensely 

powerful application of electronics, in our society goes far beyond the wildest 

imagination. The same path that is leading technologies toward these remarkable 

achievements is also making them increasingly unreliable posing a threat to our 

society. Silicon technology process scaling trends, modern architecture complexity 

and the compelling requirement to diminish the Time-to-Market threaten to create a 

“validation wall”. As a result, semiconductor industry and academic researchers must 

explore radical solution and develop innovative techniques to address the 

dependability challenges of the current and the forthcoming microprocessors. This 

thesis introduced novel methodologies to address the validation challenges posed 

throughout the life-cycle of a microprocessor. 

Microprocessor validation is grouped into three categories, based on where they 

intervene in a microprocessor’s lifecycle: (a) silicon debug: the first hardware 

prototypes are exhaustively validated, (b) manufacturing testing: the final quality 

control during massive production, and (c) in-field verification: runtime error 

detection techniques to guarantee correct operation. This thesis introduces various 



techniques to tackle the challenges of microprocessor validation targeting to: (a) make 

the dependability process more efficient; and (b) be easily applicable to the existing 

industrial flow. The contributions of this thesis are as follows: 

• Silicon debug: The share of silicon debug in the overall microprocessor chips 

development cycle is rapidly expanding due to the ever growing design complexity 

and the limited throughput of pre-silicon verification methods. Massive application of 

short random test programs on the prototype microprocessor chips is one of the most 

effective parts of silicon debug. Despite its bug detection capability, it is constrained 

by extreme computing needs for random test programs simulation to extract the bug-

free memory image. Another major bottleneck and source of “noise” in this phase is 

that large numbers of random test programs fail due to the same or similar design 

bugs. This redundant behavior adds long delays in the debug flow since each failing 

random test program must be separately examined, although it does not usually bring 

new debug information. We proposed the employment of self-checking random test 

programs along with a deconfigurable microprocessor architecture to avoid the time-

consuming simulation step, triage the redundant debug sessions and thus accelerate 

silicon debug. To do so, we exploited the inherent diversity found in all popular 

Instruction Set Architectures (ISAs) and the ability to deconfigure hardware modules 

without affecting the functional completeness of a design. Detailed evaluation of the 

method on an x86 microprocessor model demonstrated its effectiveness in 

accelerating silicon debug. 

• Manufacturing testing: We presented an efficient multithreaded (MT) SBST 

methodology that optimizes self-test time taking maximum advantage of thread-level 

parallelism while at the same time enhances the self-test program error detection 

capability on the thread-specific control logic of the processor. The methodology 

contributed to the effective application of SBST in manufacturing testing. Our 

experiments on OpenSPARC T1 revealed that the proposed methodology improved 

significant test execution time at both the core level (3.6 times) and the processor 

level (6.0 times) against single-threaded execution, while at the same time it improves 

fault coverage. Compared with a straightforward multithreading approach, it reduces 

the self-test time at both the core level and the processor level by 33% and 20%, 

respectively. Overall, our methodology guarantees high stuck-at fault coverage (88% 

for the entire processor, more than 1.5M logic gates), which is the highest coverage 

ever reported in the literature by a software-based functional test methodology in such 

a complex industrial microprocessor. 

• In-filed verification: Aggressive technology scaling along with low voltage 

operation exacerbates the likelihood and rate of hard faults not only in large SRAM 

arrays (such as cache memories), but also in non-SRAM microprocessor structures. 

Some of the largest non-cache SRAM structures support speculation such as the 

branch predictor tables, the branch target buffers, and the data prefetcher. Faults in 

these structures will not affect correctness, but can cause severe performance 

degradation and variability among otherwise identical cores. We accurately classified 

and quantified the performance impact of hard faults in non-SRAM structures over a 

set of CPU benchmarks. To do so, we applied a statistically safe fault injection 

campaign for single and multiple faults a modified version of the cycle-accurate x86 

architectural simulator PTLsim running the SPEC CPU2006 suite. Our evaluation 

revealed significant differences in the effect of faults and their performance impacts 



across the components as well as within each component. In particular, we 

demonstrated that a very large fraction (44% to 96%) of hard faults in these 

components leads to performance fluctuation, Furthermore, faults in the data 

prefetcher degrade IPC by up to 26%, compared to fault-free operation, while faults 

on the branch prediction unit reduce IPC by more than 16%, respectively. Moreover, 

we found that faults in these components can substantially increase the performance 

variability across identical cores. Finally, we proposed low-cost microarchitectural 

techniques to diagnose predictor faults and recover the performance loss. Our 

techniques exploited the self-verification property of predictors to achieve 

performance recovery at lower cost than comparable techniques. We found that our 

solutions can recover almost all performance loss and virtually eliminate performance 

variability among cores. 

The research outcomes of this thesis open the door to several future directions. 

Future systems architectures must be designed to facilitate hardware validation. In 

particular, future solutions should have adhered to the following guideline principles: 

(a) low-power, (b) negligible area overhead, (c) scale with design complexity; and (d) 

highly automated. In the silicon debug domain, future research should focus on the 

automation and standardization of the design bug detection and root-cause analysis 

process. Furthermore, this thesis demonstrated the effectiveness of software-based 

techniques in accelerating manufacturing testing and guaranteeing a high level of fault 

coverage. This may be an indication that future microprocessors should devote 

valuable silicon estate in hardware hooks that enable the at-speed, low-cost testing. 

The growing demand for high-performance computer systems pushes computer 

architects to integrate numerous performance mechanisms in the microprocessor 

designs. However, functional correctness is prioritized over performance correctness. 

This work revealed that faults in performance components can lead to noticeable 

performance loss and variability in otherwise identical cores. Therefore, future 

designs must integrate mechanisms to continuously monitor the system performance 

health and applying contingency actions. Finally, a vital future research direction is to 

bridge the gap between silicon debug, manufacturing testing and in-field verification 

techniques through the development of cross-cutting solution that will operate 

throughout the entire life-cycle of a microprocessor.  

The vital challenge of future technologies is to build dependable systems. This 

thesis proposed various novel techniques to make the validation process, throughout 

microprocessor life-cycle, more effective in terms of bug/error detection efficiency, 

resource- and time-budget. We hope that the contributions presented in this thesis will 

advance the research in manufacturing dependable microprocessor architectures and 

will find applicability in future commercial microprocessor products. 
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